http://www.cbseguess.com/

PREVIOUS YEARS SCHOOL SUMMATIVE-EXAM QUESTIONS (REAL NUMBERS)

Q1-H.C.F. of two consecutive even numbers is :
(A) 0 (B) 1 (C) 4 (D) 2

Q2-If the HCF of 85 and 153 is expressible in the form $85 n-153$, then value of \mathbf{n} is :
(A) 3 (B) 2 (C) 4 (D) 1

Q3-If the HCF of 65 and 117 is expressible in the form $65 \mathbf{m - 1 1 7}$, then the value of \mathbf{m} is :
(A) 4 (B) 2 (C) 3 (D) 1

Q4-Rational number $\frac{p}{q}, ~ q \neq 0$ will be terminating decimal if the prime factorisation of q is of the form. (m and n are non negative integers :
(A) $2^{m} \times 3^{n}$
(B) $2^{m} \times 5^{n}(C) 3^{m} \times 5^{n}$
(D) $3^{m} x 7^{n}$

Q5-For any two positive integers a and b, there exist unique integers q and r such that $\mathbf{a}=\mathbf{b q}+\mathbf{r}, \mathbf{0} \leq \boldsymbol{r}<b$ If $\mathbf{b}=4$ then which is not the value of \mathbf{r} ?
(A) 1 (B) 2 (C) 3 (D) 4

Q6-The decimal expansion of $\frac{21}{24}$ will terminate after how many places of decimal ? (A) 1 (B) 2 (C) 3 (D) 4

Q7-Which of the following rational numbers has non terminating and repeating decimal expansion
(A) $\frac{15}{1600}$
(B) $\frac{17}{6}$
C) $\frac{23}{8}(\mathrm{D}$
D) $\frac{35}{50}$

Q8-The decimal expansion of $\frac{6}{1250}$ will terminate after how many places of decimal ?
(A) 1
(B) 2
(C) 3 (D) 4

Q9-The decimal expansion of $\frac{17}{8}$ will terminate after how many places of decimals ? (A) 2 (B) 1 (C) 3 (D) will not terminate

Q10-For some integer ' m ' every odd integer is of the form :
(A) $\mathrm{m}(\mathrm{B}) \mathrm{m}+1$
(C) $2 \mathrm{~m}(\mathrm{D}) 2 \mathrm{~m}+1$

cbse ${ }_{\text {guess }}$

Q11-If two positive integers A and B can be expressed as $A=a b^{2}$ and $B=a^{3} b$, where a, b, are prime numbers, then $\operatorname{LCM}(A, B)$ is :
(A) $a b(B) a^{2} b^{2}(C) a^{3} b^{2}(D) a^{4} b^{3}$

Q41-Prove that $\sqrt{3}+\sqrt{2}$ is irrational
Let $\sqrt{3}+\sqrt{2}$ is a rational number
$\frac{\mathrm{p}}{\mathrm{q}}=\sqrt{3}+\sqrt{2}$
Squaring both sides
$3+2+2 \sqrt{6}=\frac{p^{2}}{q^{2}}$
$2 \sqrt{6}=\frac{p^{2}}{q^{2}}-5$
$\sqrt{6}=\frac{p^{2}-5 q^{2}}{2 q^{2}}$
Irrational = rational
Which is not possible
So that $\sqrt{3}+\sqrt{2}$ is irrational
Q42-Prove that $\sqrt{5}$ is irrational.
Let $\sqrt{5}$ is a rational number then there exist p and q such that
$\frac{p}{q}=\sqrt{5} \quad p$ and q are co-prime
$\frac{\mathrm{p}^{2}}{\mathrm{q}^{2}}=(\sqrt{5})^{2}$
$\frac{\mathrm{p}^{2}}{\mathrm{q}^{2}}=5$
$\mathrm{P}^{2}=5 \mathrm{q}^{2}$
5| p^{2}
5|p
$\mathrm{P}=5 \mathrm{c}$ for some integer c
$\mathrm{P}^{2} \mid 25 \mathrm{c}^{2}$
$25 \mathrm{c}^{2}=5 \mathrm{q}^{2}$
$\mathrm{q}^{2}=5 \mathrm{c}^{2}$
$5 \mid q^{2}$
5|q
So that 5 is a common factor of p and q , but p and q are co-prime i.e. $\operatorname{HCF}(\mathrm{p}, \mathrm{q})=1$
This means that our supposition is wrong
$=\sqrt{5}$ is irrational number
Q43-Prove that $\frac{2 \sqrt{3}}{5}$ is an irrational.

cbse Sguess $^{\text {g }}$

http://www.cbseguess.com/

Let $\frac{2 \sqrt{3}}{5}$ is a rational number

$$
\frac{2 \sqrt{3}}{5}=\frac{p}{q}
$$

$$
\sqrt{3}=\frac{5 p}{2 q}
$$

Irrational = rational
Which is not possible
So that $\frac{2 \sqrt{3}}{5}$ is irrational

Q97-Show that the square of any positive odd integer is of the form $8 \mathbf{m + 1}$, for some integer
m.

Let a be any +ve integer
By Euclid's division lemma
$a=b q+r \quad$ where $b=8$
$\mathrm{a}=8 \mathrm{q}+\mathrm{r} \quad 0 \leq \mathrm{r}<8$
$a=8 q$ when $r=0$ even for any +ve integer $q=1,2,3---(a=8,16,24-\cdots---)$
$a=8 q+1$, if $r=1$ odd for any + ve integer $q=1,2,3-----(a=9,17,25-----)$
$a=8 q+2$ if $r=2$ even for any + ve integer $q=1,2,3---(a=10,18,26----)$
$a=8 q+3$ if $r=3$ odd for any +ve integer $q=1,2,3---(a=11,19,27--\cdots--)$
$a=8 q+4$ if $r=4$ even for any + ve integer $q=1,2,3---(a=12,20,28-----)$
$a=8 q+5$ if $r=5$ odd for any +ve integer $q=1,2,3---(a=13,21,29----)$
$a=8 q+6$ if $r=6$ even for any + ve integer $q=1,2,3---(a=14,22,30-----)$
$a=8 q+7$ if $r=7$ odd for any +ve integer $q=1,2,3--(a=15,23,31----)$
" a " be any +ve odd integer in the form of $8 q+1,8 q+3$ and $8 q+5$ for some integer q
Case I- $\quad \mathrm{a}=8 \mathrm{q}+1$

$$
\begin{aligned}
\mathrm{a}^{2} & =(8 q+1)^{2}=64 q^{2}+16 q+1 \\
\mathrm{a}^{2} & =8\left(8 q^{2}+2 q\right)+1 \\
& =8 m+1 \quad, \text { where } m=8 q^{2}+2 q
\end{aligned}
$$

Case II - $\mathrm{a}=8 \mathrm{q}+3$

$$
\begin{aligned}
\mathrm{a}^{2} & =(8 q+3)^{2}=64 q^{2}+48 q+9 \\
& =64 q^{2}+48 q+8+1 \\
\mathrm{a}^{2} & =8\left(8 q^{2}+6 q+1\right)+1 \\
& =8 m+1, \text { where } m=8 q^{2}+6 q+1
\end{aligned}
$$

Case III - $\mathrm{a}=8 \mathrm{q}+5$

$$
\begin{aligned}
\mathrm{a}^{2} & =(8 q+5)^{2}=64 q^{2}+80 q+25 \\
& =64 q^{2}+80 q+24+1 \\
a^{2} & =8\left(8 q^{2}+10 q+3\right)+1 \\
& =8 m+1, \text { where } m=8 q^{2}+10 q+3
\end{aligned}
$$

cbse $\wp_{\text {guess }}$

http://www.cbseguess.com/
So that the square of any positive odd integer is of the form $8 \mathrm{~m}+1$, for some integer m .

IF YOU WANT
(1) RD SHARMA UNSOLVED EXERCISE SOLUTION SA-1
(2) PREVIOUS YEARS CBSE QUESTIONS WITH SOLUTION SA-1
(3) HOT QUESTIONS WITH SOLUTION SA-1

THEN CONTACT - jrkalia@rediffmail.com
MOB- 09464074055

